

    
      Navigation

      
        	
          index

        	
          next |

        	zanna 0.2.0 documentation 
 
      

    


    
      
          
            
  
Welcome to zanna’s documentation!

Contents:



	zanna
	Motivation

	Features

	Usage





	Installation
	Stable release

	From sources





	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips












Indices and tables


	Index

	Module Index

	Search Page







          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	zanna 0.2.0 documentation 
 
      

    


    
      
          
            
  
zanna





	target:	https://pypi.python.org/pypi/zanna









	target:	https://travis-ci.org/MirkoRossini/zanna





[image: https://readthedocs.org/projects/zanna/badge/?version=latest]




	target:	https://zanna.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status









	target:	https://pyup.io/repos/github/mirkorossini/zanna/
:alt: Updates









	target:	
	https://pyup.io/repos/github/mirkorossini/zanna/

	



	alt:	Python 3









Simple Dependency Injection library.
Supports python 3.5+ and makes full use of the typing annotations.
The design is pythonic but inspired by Guice in many aspects.


	Free software: BSD license

	Documentation: https://zanna.readthedocs.io.










Motivation

Zanna is meant to be a modern (3.5+), well maintained injection library for Python.




Features


	Support for typing annotations

	Decorators are not mandatory: all the injection logic can be outside your modules

	Supports injection by name

	Instances can be bound directly, useful when testing (i.e. by override bindings with mocks)

	No autodiscover for performance reasons and to avoid running into annoying bugs






Usage


Injecting by variable name

The basic form of injection is performed by variable name.
The injector expects a list of modules (any callable that takes a Binder as argument).
You can get the bound instance by calling get_instance

from zanna import Injector, Binder

def mymodule(binder: Binder) -> None:
    binder.bind_to("value", 3)

injector = Injector(mymodule)
assert injector.get_instance("value") == 3





Zanna will automatically inject the value into arguments with the same name:

from zanna import Injector, Binder

def mymodule(binder: Binder) -> None:
    binder.bind_to("value", 3)

class ValueConsumer:
    def __init__(self, value):
        self.value = value

injector = Injector(mymodule)
assert injector.get_instance(ValueConsumer).value == 3








Injecting by type annotation

Zanna also makes use of python typing annotations to find the right instance to inject.

from zanna import Injector, Binder

class ValueClass:
    def __init__(self, the_value: int):
        self.the_value = the_value

class ValueConsumer:
    def __init__(self, value_class_instance: ValueClass):
        self.value_class_instance = value_class_instance

def mymodule(binder: Binder) -> None:
    binder.bind_to("the_value", 3)
    binder.bind(ValueClass)

injector = Injector(mymodule)
assert injector.get_instance(ValueConsumer).value_class_instance.the_value == 3








Singleton or not singleton?

Instances provided by the injector are always singletons, meaning that the __init__ method of
the class will be called only the first time, and every subsequent call of get_instance will
return the same instance:

from zanna import Injector

class MyClass:
    pass
injector = Injector(lambda binder: binder.bind(MyClass))
assert injector.get_instance(MyClass) == injector.get_instance(MyClass)








Use providers for more complex use cases

Binder instances can be used to bind providers. A provider is any callable that takes
any number of arguments and returns any type. The injector will try to inject all the necessary
arguments. Providers can be bound explicitely or implicitely (in which case zanna will use the
return annotation to bind by type).

from zanna import Injector, Binder

class AValueConsumer:
    def __init__(self, value: int):
        self.value = value

def explicit_provider(a_value: int) -> int:
    return a_value + 100

def implicit_provider(value_plus_100: int) -> AValueConsumer:
    return AValueConsumer(value_plus_100)

def mymodule(binder: Binder) -> None:
    binder.bind_to("a_value", 3)
    binder.bind_provider("value_plus_100", explicit_provider)
    binder.bind_provider(implicit_provider)

injector = Injector(mymodule)
assert injector.get_instance(AValueConsumer).value == 103








Override existing bindings

Bindings can be overridden. Overriding a non-existent binding will result in a ValueError being raised.

Override bindings is extremely useful when testing, as any part of your stack can be replaced with a mock.

from zanna import Injector, Binder
from unittest.mock import MagicMock

class ValueClass:
    def __init__(self):
        pass
    def retrieve_something(self):
        return ['some', 'thing']

class ValueConsumer:
    def __init__(self, value: ValueClass):
        self.value = value


def mymodule(binder: Binder) -> None:
    binder.bind(ValueClass)

injector = Injector(mymodule)
assert injector.get_instance(ValueConsumer).value.retrieve_something() == ['some', 'thing']

def module_overriding_value_class(binder: Binder) -> None:
    mock_value_class = MagicMock(ValueClass)
    mock_value_class.retrieve_something.return_value = ['mock']
    binder.override_binding(ValueClass, mock_value_class)

injector = Injector(mymodule, module_overriding_value_class)
assert injector.get_instance(ValueConsumer).value.retrieve_something() == ['mock']








Using the decorators

One of the advantages of using Zanna over other solutions is that it doesn’t force you
to pollute your code by mixing in the injection logic.

If you are working on a small project and would like to handle part (or all) of the
injection logic using decorators instead of modules, Zanna supports that as well.

Internally, Zanna creates a module that sets up the bindings as indicated by the decorators
(in a random order).

All Injectors initialized with use_decorators=True will run that module first on their Binder.

Zanna supports the following decorators:


	decorators.provider, which takes a provided annotated with an appropriate return type

	decorators.provider_for, which can be given the name or the class of the instance provided

	decorators.inject, to annotate class to be bound/injected



Here’s an example:

from zanna import Injector
from zanna import decorators
class Thing:
    pass

@decorators.provider_for("value")
def provide_value():
    return 3

@decorators.provider
def provide_thing() -> Thing:
    return Thing()


@decorators.inject
class OtherThing:
    def __init__(self, value, thing:Thing):
        self.value = value
        self.thing = thing

inj = Injector(use_decorators=True)
otherthing = inj.get_instance(OtherThing)
assert otherthing.value == 3
assert isinstance(otherthing.thing, Thing)
assert isinstance(otherthing, OtherThing)








Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.









          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	zanna 0.2.0 documentation 
 
      

    


    
      
          
            
  
Installation


Stable release

To install zanna, run this command in your terminal:

$ pip install zanna





This is the preferred method to install zanna, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.




From sources

The sources for zanna can be downloaded from the Github repo [https://github.com/MirkoRossini/zanna].

You can either clone the public repository:

$ git clone git://github.com/MirkoRossini/zanna





Or download the tarball [https://github.com/MirkoRossini/zanna/tarball/master]:

$ curl  -OL https://github.com/MirkoRossini/zanna/tarball/master





Once you have a copy of the source, you can install it with:

$ python setup.py install











          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	zanna 0.2.0 documentation 
 
      

    


    
      
          
            
  
Usage

To use zanna in a project:

import zanna









          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	zanna 0.2.0 documentation 
 
      

    


    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/MirkoRossini/zanna/issues.

If you are reporting a bug, please include:


	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.






Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.




Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.




Write Documentation

zanna could always use more documentation, whether as part of the
official zanna docs, in docstrings, or even on the web in blog posts,
articles, and such.




Submit Feedback

The best way to send feedback is to file an issue at https://github.com/MirkoRossini/zanna/issues.

If you are proposing a feature:


	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)








Get Started!

Ready to contribute? Here’s how to set up zanna for local development.


	Fork the zanna repo on GitHub.



	Clone your fork locally:

$ git clone git@github.com:your_name_here/zanna.git







	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv zanna
$ cd zanna/
$ python setup.py develop







	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 zanna tests
$ python setup.py test or py.test
$ tox





To get flake8 and tox, just pip install them into your virtualenv.



	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.








Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/MirkoRossini/zanna/pull_requests
and make sure that the tests pass for all supported Python versions.






Tips

To run a subset of tests:

$ py.test tests.test_zanna











          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	zanna 0.2.0 documentation 
 
      

    


    
      
          
            

Index



 




          

      

      

    


    
         Copyright 2016.
      Created using Sphinx 1.3.5.
    

  _static/comment-close.png





_static/comment-bright.png





_static/comment.png





_static/minus.png





_static/file.png





_static/plus.png





authors.html


    
      Navigation


      
        		
          index


        		zanna 0.2.0 documentation »

 
      


    


    
      
          
            
  
Credits



Development Lead



		Mirko Rossini <mirko.rossini@ymail.com>








Contributors


None yet. Why not be the first?








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

search.html


    
      Navigation


      
        		
          index


        		zanna 0.2.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

modules.html


    
      Navigation


      
        		
          index


        		zanna 0.2.0 documentation »

 
      


    


    
      
          
            
  
zanna




		zanna package
		Submodules


		zanna.decorators module


		Module contents

















          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/ajax-loader.gif





_static/up.png





_static/up-pressed.png





history.html


    
      Navigation


      
        		
          index


        		zanna 0.2.0 documentation »

 
      


    


    
      
          
            
  
History



0.1.0 (2016-10-13)



		First release on PyPI.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/down-pressed.png





zanna.html


    
      Navigation


      
        		
          index


        		zanna 0.2.0 documentation »

 
      


    


    
      
          
            
  
zanna package



Submodules





zanna.decorators module





Module contents








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/down.png





